
mosartwmpy
Release latest

Travis B. Thurber

Dec 29, 2022

CONTENTS

1 mosartwmpy 3

2 getting started 5

3 model input 7

4 model output 9

5 subdomains 11

6 visualization 13

7 model coupling 17

8 testing and validation 19

9 mosartwmpy tutorial 21

10 Python Virtual Environments 27

11 mosartwmpy Python API 29

Python Module Index 37

Index 39

i

ii

mosartwmpy, Release latest

Date: Dec 29, 2022 Version: 0.5.1

Useful links: Source Repository | Issues & Ideas

mosartwmpy is a Python translation of MOSART-WM, a water routing and reservoir management model written in
Fortran.

Getting started

Get to know the mosartwmpy model.

Getting started

Tutorial

Follow along with this Jupyter notebook to learn the ropes of mosartwmpy.

Tutorial

Tips & tricks

Learn about ways to manage Python virtual environments.

Virtual environments

API reference

A detailed description of the mosartwmpy API.

API

CONTENTS 1

https://github.com/immm-sfa/mosartwmpy
https://github.com/immm-sfa/mosartwmpy/issues
https://github.com/IMMM-SFA/mosartwmpy/actions/workflows/build.yml
https://codecov.io/gh/IMMM-SFA/mosartwmpy
https://doi.org/10.21105/joss.03221
https://zenodo.org/badge/latestdoi/312114600

mosartwmpy, Release latest

2 CONTENTS

CHAPTER

ONE

MOSARTWMPY

mosartwmpy is a python translation of MOSART-WM, a model for water routing and reservoir management written
in Fortran. The original code can be found at IWMM and E3SM, in which MOSART is the river routing component
of a larger suite of earth-science models. The motivation for rewriting is largely for developer convenience – running,
debugging, and adding new capabilities were becoming increasingly difficult due to the complexity of the codebase
and lack of familiarity with Fortran. This version aims to be intuitive, lightweight, and well documented, while still
being highly interoperable. For a quick start, check out the Jupyter notebook tutorial!

3

https://github.com/IMMM-SFA/iwmm
https://github.com/E3SM-Project/E3SM
https://github.com/IMMM-SFA/mosartwmpy/blob/main/notebooks/tutorial.ipynb

mosartwmpy, Release latest

4 Chapter 1. mosartwmpy

CHAPTER

TWO

GETTING STARTED

Ensure you have Python >= 3.7 available (consider using a virtual environment, see the docs here for a brief tutorial),
then install mosartwmpy with:

pip install mosartwmpy

Alternatively, install via conda with:

conda install -c conda-forge mosartwmpy

Download a sample input dataset spanning May 1981 by running the following and selecting option 1 for “tutorial”.
This will download and unpack the inputs to your current directory. Optionally specify a path to download and extract
to instead of the current directory.

python -m mosartwmpy.download

Settings are defined by the merger of the mosartwmpy/config_defaults.yaml and a user specified file which can
override any of the default settings. Create a config.yaml file that defines your simulation (if you chose an alternate
download directory in the step above, you will need to update the paths to point at your data):

config.yaml

simulation:
name: tutorial
start_date: 1981-05-24
end_date: 1981-05-26

grid:
path: ./input/domains/mosart_conus_nldas_grid.nc

runoff:
read_from_file: true
path: ./input/runoff/runoff_1981_05.nc

water_management:
enabled: true
demand:
read_from_file: true
path: ./input/demand/demand_1981_05.nc

reservoirs:
enable_istarf: true
parameters:
path: ./input/reservoirs/reservoirs.nc

(continues on next page)

5

https://github.com/pyenv/pyenv
https://mosartwmpy.readthedocs.io/en/latest/virtualenv.html

mosartwmpy, Release latest

(continued from previous page)

dependencies:
path: ./input/reservoirs/dependency_database.parquet

streamflow:
path: ./input/reservoirs/mean_monthly_reservoir_flow.parquet

demand:
path: ./input/reservoirs/mean_monthly_reservoir_demand.parquet

mosartwmpy implements the Basic Model Interface defined by the CSDMS, so driving it should be familiar to those
accustomed to the BMI. To launch the simulation, open a python shell and run the following:

from mosartwmpy import Model

path to the configuration yaml file
config_file = 'config.yaml'

initialize the model
mosart_wm = Model()
mosart_wm.initialize(config_file)

advance the model one timestep
mosart_wm.update()

advance until the `simulation.end_date` specified in config.yaml
mosart_wm.update_until(mosart_wm.get_end_time())

6 Chapter 2. getting started

https://csdms.colorado.edu/wiki/BMI

CHAPTER

THREE

MODEL INPUT

Input for mosartwmpy consists of many files defining the characteristics of the discrete grid, the river network, surface
and subsurface runoff, water demand, and dams/reservoirs. Currently, the gridded data is expected to be provided at
the same spatial resolution. Runoff input can be provided at any time resolution; each timestep will select the runoff at
the closest time in the past. Currently, demand input is read monthly but will also pad to the closest time in the past.
Efforts are under way for more robust demand handling.

Dams/reservoirs require four different input files: the physical characteristics, the average monthly flow expected during
the simulation period, the average monthly demand expected during the simulation period, and a database mapping
each GRanD ID to grid cell IDs allowed to extract water from it. These dam/reservoir input files can be generated from
raw GRanD data, raw elevation data, and raw ISTARF data using the provided utility. The best way to understand
the expected format of the input files is to examine the sample inputs provided by the download utility: python -m
mosartwmpy.download.

3.1 multi-file input

To use multi-file demand or runoff input, use year/month/day placeholders in the file path options like so:

• If your files look like runoff-1999.nc, use runoff-{Y}.nc as the path

• If your files look like runoff-1999-02.nc, use runoff-{Y}-{M}.nc as the path

• If your files look like runoff-1999-02-03, use runoff-{Y}-{M}-{D}.nc as the path, but be sure to provide
files for leap days as well!

7

mosartwmpy, Release latest

8 Chapter 3. model input

CHAPTER

FOUR

MODEL OUTPUT

By default, key model variables are output on a monthly basis at a daily averaged resolution to ./output/
<simulation name>/<simulation name>_<year>_<month>.nc. See the configuration file for examples of how
to modify the outputs, and the ./mosartwmpy/state/state.py file for state variable names.

Alternatively, certain model outputs deemed most important can be accessed using the BMI interface methods. For
example:

from mosartwmpy import Model

mosart_wm = Model()
mosart_wm.initialize()

get a list of model output variables
mosart_wm.get_output_var_names()

get the flattened numpy.ndarray of values for an output variable
supply = mosart_wm.get_value_ptr('supply_water_amount')

9

mosartwmpy, Release latest

10 Chapter 4. model output

CHAPTER

FIVE

SUBDOMAINS

To simulate only a subset of basins (defined here as a collection of grid cells that share the same outlet cell), use the
configuration option grid -> subdomain (see example below) and provide a list of latitude/longitude coordinate
pairs representing each basin of interest (any single coordinate pair within the basin). For example, to simulate only
the Columbia River basin and the Lake Washington regions, one could enter the coordinates for Portland and Seattle:

config.yaml

grid:
subdomain:
- 47.6062,-122.3321
- 45.5152,-122.6784

unmask_output: true

By default, the output files will still store empty NaN-like values for grid cells outside the subdomain, but for even
faster simulations and smaller output files set the grid -> unmask_output option to false. Disabling this option
causes the output files to only store values for grid cells within the subdomain. These smaller files will likely take extra
processing to effectively interoperate with other models.

11

mosartwmpy, Release latest

12 Chapter 5. subdomains

CHAPTER

SIX

VISUALIZATION

Model instances can plot the current value of certain input and output variables (those available from Model.
get_output_var_name and Model.get_input_var_names):

from mosartwmpy import Model
config_file = 'config.yaml'
mosart_wm = Model()
mosart_wm.initialize(config_file)
for _ in range(8):

mosart_wm.update()

mosart_wm.plot_variable('outgoing_water_volume_transport_along_river_channel', log_
→˓scale=True)

Using provided utility functions, the output of a simulation can be plotted as well.

Plot the storage, inflow, and outflow of a particular GRanD dam:

13

mosartwmpy, Release latest

from mosartwmpy import Model
from mosartwmpy.plotting.plot import plot_reservoir
config_file = 'config.yaml'
mosart_wm = Model()
mosart_wm.initialize(config_file)
mosart_wm.update_until()

plot_reservoir(
model=mosart_wm,
grand_id=310,
start='1981-05-01',
end='1981-05-31',

)

Plot a particular output variable (as defined in config.yaml) over time:

from mosartwmpy import Model
from mosartwmpy.plotting.plot import plot_variable
config_file = 'config.yaml'
mosart_wm = Model()
mosart_wm.initialize(config_file)
mosart_wm.update_until()

plot_variable(
model=mosart_wm,
variable='RIVER_DISCHARGE_OVER_LAND_LIQ',
start='1981-05-01',
end='1981-05-31',
log_scale=True,

(continues on next page)

14 Chapter 6. visualization

mosartwmpy, Release latest

(continued from previous page)

cmap='winter_r',
)

If cartopy, scipy, and geoviews are installed, tiles can be displayed along with the plot:

plot_variable(
model=mosart_wm,
variable='RIVER_DISCHARGE_OVER_LAND_LIQ',
start='1981-05-01',
end='1981-05-31',
log_scale=True,
cmap='winter_r',
tiles='StamenWatercolor'

)

15

mosartwmpy, Release latest

16 Chapter 6. visualization

CHAPTER

SEVEN

MODEL COUPLING

A common use case for mosartwmpy is to run coupled with output from the Community Land Model (CLM). To see
an example of how to drive mosartwmpy with runoff from a coupled model, check out the Jupyter notebook tutorial!

17

https://github.com/IMMM-SFA/mosartwmpy/blob/main/notebooks/tutorial.ipynb

mosartwmpy, Release latest

18 Chapter 7. model coupling

CHAPTER

EIGHT

TESTING AND VALIDATION

Before running the tests or validation, make sure to download the “sample_input” and “validation” datasets using the
download utility python -m mosartwmpy.download.

To execute the tests, run ./test.sh or python -m unittest discover mosartwmpy/tests from the repository
root.

To execute the validation, run a model simulation that includes the years 1981 - 1982, note your output directory, and
then run python -m mosartwmpy.validate from the repository root. This will ask you for the simulation output
directory, think for a moment, and then open a figure with several plots representing the NMAE (Normalized Mean
Absolute Error) as a percentage and the spatial sums of several key variables compared between your simulation and
the validation scenario. Use these plots to assist you in determining if the changes you have made to the code have
caused unintended deviation from the validation scenario. The NMAE should be 0% across time if you have caused
no deviations. A non-zero NMAE indicates numerical difference between your simulation and the validation scenario.
This might be caused by changes you have made to the code, or alternatively by running a simulation with different
configuration or parameters (i.e. larger timestep, fewer iterations, etc). The plots of the spatial sums can assist you in
determining what changed and the overall magnitude of the changes.

If you wish to merge code changes that intentionally cause significant deviation from the validation scenario, please
work with the maintainers to create a new validation dataset.

19

mosartwmpy, Release latest

20 Chapter 8. testing and validation

CHAPTER

NINE

MOSARTWMPY TUTORIAL

This tutorial will demonstrate the basic use of mosartwmpy in two scenarios: * First, in standalone mode where all
model inputs are provided from files * Second, a contrived example of running the model coupled with runoff input
from another model

The use of restart files will also be demonstrated.

[1]: from datetime import date, datetime
import numpy as np

from mosartwmpy import Model
from mosartwmpy.plotting.plot import plot_reservoir, plot_variable
from mosartwmpy.utilities.download_data import download_data

/Users/thur961/im3/mosartwmpy/venv/lib/python3.9/site-packages/pandas/compat/__init__.py:
→˓124: UserWarning: Could not import the lzma module. Your installed Python is␣
→˓incomplete. Attempting to use lzma compression will result in a RuntimeError.
warnings.warn(msg)

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Data type cannot be displayed: application/javascript, application/vnd.holoviews_load.v0+json

Download and unpack the tutorial dataset, which covers May of 1981 (this may take a few minutes):

[2]: download_data('tutorial')

Downloading example data from https://zenodo.org/record/5597952/files/mosartwmpy-
→˓tutorial-1981-05.zip?download=1
https://zenodo.org/record/5597952/files/mosartwmpy-tutorial-1981-05.zip?download=1: 100
→˓%|| 16.1M/16.1M [00:05<00:00, 3.22MB/s]
Unzipped: ./input/
Unzipped: ./input/domains/
Unzipped: ./input/domains/land.nc
Unzipped: ./input/domains/mosart.nc
Unzipped: ./input/reservoirs/
Unzipped: ./input/reservoirs/mean_monthly_reservoir_flow.parquet
Unzipped: ./input/reservoirs/mean_monthly_reservoir_demand.parquet
Unzipped: ./input/reservoirs/reservoirs.nc
Unzipped: ./input/reservoirs/dependency_database.parquet

(continues on next page)

21

mosartwmpy, Release latest

(continued from previous page)

Unzipped: ./input/runoff/
Unzipped: ./input/runoff/runoff_1981_05.nc
Unzipped: ./input/demand/
Unzipped: ./input/demand/demand_1981_05.nc
Download and install complete.

Initialize the model using the provided config.yaml, which has the input paths properly specified for this notebook:

[3]: mosart_wm = Model()
mosart_wm.initialize('./config.yaml')

Initalizing model...
Done.

The model is now setup to run in standalone mode, with runoff provided from file.

Let’s run for a couple weeks in this mode (this may take a couple minutes):

[4]: mosart_wm.config["simulation.end_date"] = date(1981, 5, 14)
mosart_wm.update_until(mosart_wm.get_end_time())

Beginning simulation for 1981-05-01 through 1981-05-14...
Running mosartwmpy
Simulation completed in 1 minutes and 25 seconds.

Let’s take a look at how the river channels have formed over this week.

[5]: mosart_wm.plot_variable('surface_water_amount', log_scale=True)

We can see the dominant river channels beginning to form! Since the initial conditions have no surface water, it can
take a few weeks of model time to get to a good baseline, depending on the amount of rainfall.

Now let’s pretend to run the model in coupled mode, as if runoff were being provided by another model such as CLM.

First, we’ll implement dummy functions that create random runoff to take the place of the coupled model:

[6]: def get_surface_runoff():
provide the surface runoff for each grid cell in mm/s

(continues on next page)

22 Chapter 9. mosartwmpy tutorial

mosartwmpy, Release latest

(continued from previous page)

data = np.random.normal(0.001, 0.001, mosart_wm.get_grid_shape())
return np.where(

data < 0,
0,
data

)

def get_subsurface_runoff():
provide the subsurface runoff for each grid cell in mm/s
data = np.random.normal(0.00015, 0.00015, mosart_wm.get_grid_shape())
return np.where(

data < 0,
0,
data

)

In coupled mode, we’ll need to run the model in chunks of time that correspond to the coupling period and update
the coupled variables between chunks. For this example, let’s say the coupling period is one day – so we’ll update the
runoff variables after each day of model time. The same technique could be extended to run the coupled model between
each day rather than generating synthetic data.

[7]: # first, disable reading runoff from file
mosart_wm.config["runoff.read_from_file"] = False

set the end date for two weeks out
mosart_wm.config["simulation.end_date"] = date(1981, 5, 28)

for each day, set the runoff and simulate for one day
note that the model expects the input flattened as a 1-d array
while mosart_wm.get_current_time() < mosart_wm.get_end_time():

set the surface runoff from a coupled model
mosart_wm.set_value('surface_runoff_flux', get_surface_runoff().flatten())
set the subsurface runoff from a coupled model
mosart_wm.set_value('subsurface_runoff_flux', get_subsurface_runoff().flatten())
simulate for one day
day = date.fromtimestamp(mosart_wm.get_current_time())
while day == date.fromtimestamp(mosart_wm.get_current_time()):

mosart_wm.update()

Let’s see how the random rainfall affected the river channels. . .

[8]: mosart_wm.plot_variable('surface_water_amount', log_scale=True)

23

mosartwmpy, Release latest

Oops, looks like we flooded Canada and Mexico. The river network isn’t very well defined there (the tutorial only
includes CONUS data for the most part) so it makes sense. Depending on the random data generation, you’re probably
seeing a lot more water across the CONUS too.

And how about the reservoir storage?

[9]: mosart_wm.plot_variable('reservoir_water_amount', log_scale=True)

Let’s try restarting the simulation after the original two weeks in May, and run the second two weeks with the runoff
from the file. By default, restart files are produced at the end of each model year and also at the end of each simulation.
The provided config_with_restart.yaml file will use the restart file from 1981-05-15. You can also use a restart
file like an initial conditions file by setting the start date to whatever date you choose. But in this case we’ll restart
where we left off.

[10]: mosart_wm = Model()
mosart_wm.initialize('./config_with_restart.yaml')
mosart_wm.config["simulation.start_date"] = date(1981, 5, 15)
mosart_wm.config["simulation.end_date"] = date(1981, 5, 28)
mosart_wm.update_until(mosart_wm.get_end_time())

24 Chapter 9. mosartwmpy tutorial

mosartwmpy, Release latest

Initalizing model...
Loading restart file from: `./output/tutorial/restart_files/tutorial_restart_1981_05_15.
→˓nc`.
Done.
Beginning simulation for 1981-05-15 through 1981-05-28...
Running mosartwmpy
Simulation completed in 1 minutes and 21 seconds.

Let’s look at the surface water and reservoir storage again:

[11]: mosart_wm.plot_variable('surface_water_amount', log_scale=True)

[12]: mosart_wm.plot_variable('reservoir_water_amount', log_scale=True)

These plots make more sense than the random runoff!

mosartwmpy also includes visualization methods to examine the output over time. For instance, one can plot the
behavior of a specific reservoir or create a timeplayer of the water deficit:

25

mosartwmpy, Release latest

[13]: plot_reservoir(
model=mosart_wm,
grand_id=310,
start='1981-05-01',
end='1981-05-31',

)

[14]: plot_variable(
model=mosart_wm,
variable='WRM_DEFICIT',
start='1981-05-01',
end='1981-05-31',
log_scale=True,
cmap='autumn_r',

)

Launching server at http://localhost:58014

This concludes the mosartwmpy tutorial. Feel free to open issues with your feedback or start topics on the discussion
board!

26 Chapter 9. mosartwmpy tutorial

CHAPTER

TEN

PYTHON VIRTUAL ENVIRONMENTS

Maintaining different versions of Python can be a chore. Thankfully, there are many tools for managing Python envi-
ronments; here are a few recommendations:

• PyCharm IDE – great for developing code in Python, and can automatically create virtual environments for a
codebase by detecting versions and dependencies from the setup.py or setup.cfg.

• Conda package manager – a Python package manager focused on scientific computing that can also manage
virtual environments.

• pyenv CLI – a shell based tool for installing and switching between different versions of Python and dependencies.
I will give a brief tutorial of using pyenv below, but recognize that the instructions may change over time so the
pyenv documentation is the best place to look.

To create a Python 3.9 virtual environment, try the following steps:

• Install pyenv:

– if on Mac, use brew: brew install pyenv

– if on a linux system, try pyenv-installer

– if on Windows, try pyenv-win

• Install Python 3.9:

– in a shell, run pyenv install 3.9.1

• Activate Python 3.9 in the current shell

– in the shell, run pyenv shell 3.9.1

• Proceed with the install of mosartwmpy:

– in the same shell, run pip install mosartwmpy

• Now you can interact with mosartwmpy in this current shell session

– if you start a new shell session you will need to run pyenv shell 3.9.1 again before proceeding

– this new shell session should maintain all previously pip installed modules for Python 3.9.1

27

https://www.jetbrains.com/pycharm/
https://docs.conda.io
https://github.com/pyenv/pyenv
https://brew.sh/
https://github.com/pyenv/pyenv-installer
https://github.com/pyenv-win/pyenv-win

mosartwmpy, Release latest

28 Chapter 10. Python Virtual Environments

CHAPTER

ELEVEN

MOSARTWMPY PYTHON API

11.1 mosartwmpy.model module

class mosartwmpy.model.Model
Bases: bmipy.bmi.Bmi

The mosartwmpy basic model interface.

Parameters Bmi (Bmi) – The Basic Model Interface class

Returns A BMI instance of the MOSART-WM model.

Return type Model

finalize()→ None
Perform tear-down tasks for the model.

Perform all tasks that take place after exiting the model’s time loop. This typically includes deallocating
memory, closing files and printing reports.

get_component_name()→ str
Name of the component.

Returns The name of the component.

Return type str

get_current_time()→ float
Current time of the model.

Returns The current model time.

Return type float

get_end_time()→ float
End time of the model.

Returns The maximum model time.

Return type float

get_grid_edge_count(grid: int = 0)→ int
Get the number of edges in the grid.

Parameters grid (int) – A grid identifier.

Returns The total number of grid edges.

Return type int

29

mosartwmpy, Release latest

get_grid_edge_nodes(grid: int = 0, edge_nodes: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get the edge-node connectivity.

Parameters

• grid (int) – A grid identifier.

• edge_nodes (ndarray of int, shape (2 x nnodes,)) – A numpy array to place the edge-node
connectivity. For each edge, connectivity is given as node at edge tail, followed by node at
edge head.

Returns The input numpy array that holds the edge-node connectivity.

Return type ndarray of int

get_grid_face_count(grid: int = 0)→ int
Get the number of faces in the grid.

Parameters grid (int) – A grid identifier.

Returns The total number of grid faces.

Return type int

get_grid_face_edges(grid: int = 0, face_edges: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get the face-edge connectivity.

Parameters

• grid (int) – A grid identifier.

• face_edges (ndarray of int) – A numpy array to place the face-edge connectivity.

Returns The input numpy array that holds the face-edge connectivity.

Return type ndarray of int

get_grid_face_nodes(grid: int = 0, face_nodes: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get the face-node connectivity.

Parameters

• grid (int) – A grid identifier.

• face_nodes (ndarray of int) – A numpy array to place the face-node connectivity.
For each face, the nodes (listed in a counter-clockwise direction) that form the boundary of
the face.

Returns The input numpy array that holds the face-node connectivity.

Return type ndarray of int

get_grid_node_count(grid: int = 0)→ int
Get the number of nodes in the grid.

Parameters grid (int) – A grid identifier.

Returns The total number of grid nodes.

Return type int

get_grid_nodes_per_face(grid: int = 0, nodes_per_face: Optional[numpy.ndarray] = None)→
numpy.ndarray

Get the number of nodes for each face.

Parameters

• grid (int) – A grid identifier.

30 Chapter 11. mosartwmpy Python API

mosartwmpy, Release latest

• nodes_per_face (ndarray of int, shape (nfaces,)) – A numpy array to place the number
of edges per face.

Returns The input numpy array that holds the number of nodes per edge.

Return type ndarray of int

get_grid_origin(grid: int = 0, origin: numpy.ndarray = array([0.0, 6.91389664e-310]))→
numpy.ndarray

Get coordinates for the lower-left corner of the computational grid.

Parameters

• grid (int) – A grid identifier.

• origin (ndarray of float, shape (ndim,)) – A numpy array to hold the coordinates of the
lower-left corner of the grid.

Returns The input numpy array that holds the coordinates of the grid’s lower-left corner.

Return type ndarray of float

get_grid_rank(grid: int = 0)→ int
Get number of dimensions of the computational grid.

Parameters grid (int) – A grid identifier.

Returns Rank of the grid.

Return type int

get_grid_shape(grid: int = 0, shape: numpy.ndarray = array([0, 94155524011368]))→ numpy.ndarray
Get dimensions of the computational grid.

Parameters

• grid (int) – A grid identifier.

• shape (ndarray of int, shape (ndim,)) – A numpy array into which to place the shape of the
grid.

Returns The input numpy array that holds the grid’s shape.

Return type ndarray of int

get_grid_size(grid: int = 0)→ int
Get the total number of elements in the computational grid.

Parameters grid (int) – A grid identifier.

Returns Size of the grid.

Return type int

get_grid_spacing(grid: int = 0, spacing: numpy.ndarray = array([6.91389664e-310, 4.65190098e-310]))
→ numpy.ndarray

Get distance between nodes of the computational grid.

Parameters

• grid (int) – A grid identifier.

• spacing (ndarray of float, shape (ndim,)) – A numpy array to hold the spacing between
grid rows and columns.

Returns The input numpy array that holds the grid’s spacing.

Return type ndarray of float

11.1. mosartwmpy.model module 31

mosartwmpy, Release latest

get_grid_type(grid: int = 0)→ str
Get the grid type as a string.

Parameters grid (int) – A grid identifier.

Returns Type of grid as a string.

Return type str

get_grid_x(grid: int = 0, x: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get coordinates of grid nodes in the x direction.

Parameters

• grid (int) – A grid identifier.

• x (ndarray of float, shape (nrows,)) – A numpy array to hold the x-coordinates of the grid
node columns.

Returns The input numpy array that holds the grid’s column x-coordinates.

Return type ndarray of float

get_grid_y(grid: int = 0, y: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get coordinates of grid nodes in the y direction.

Parameters

• grid (int) – A grid identifier.

• y (ndarray of float, shape (ncols,)) – A numpy array to hold the y-coordinates of the grid
node rows.

Returns The input numpy array that holds the grid’s row y-coordinates.

Return type ndarray of float

get_grid_z(grid: int = 0, z: Optional[numpy.ndarray] = None)→ numpy.ndarray
Get coordinates of grid nodes in the z direction.

Parameters

• grid (int) – A grid identifier.

• z (ndarray of float, shape (nlayers,)) – A numpy array to hold the z-coordinates of the grid
nodes layers.

Returns The input numpy array that holds the grid’s layer z-coordinates.

Return type ndarray of float

get_input_item_count()→ int
Count of a model’s input variables.

Returns The number of input variables.

Return type int

get_input_var_names()→ Tuple[str]
List of a model’s input variables.

Input variable names must be CSDMS Standard Names, also known as long variable names.

Returns The input variables for the model.

Return type list of str

32 Chapter 11. mosartwmpy Python API

mosartwmpy, Release latest

Notes

Standard Names enable the CSDMS framework to determine whether an input variable in one model is
equivalent to, or compatible with, an output variable in another model. This allows the framework to
automatically connect components.

Standard Names do not have to be used within the model.

get_output_item_count()→ int
Count of a model’s output variables.

Returns The number of output variables.

Return type int

get_output_var_names()→ Tuple[str]
List of a model’s output variables.

Output variable names must be CSDMS Standard Names, also known as long variable names.

Returns The output variables for the model.

Return type list of str

get_start_time()→ float
Start time of the model.

Model times should be of type float.

Returns The model start time.

Return type float

get_time_step()→ float
Current time step of the model.

The model time step should be of type float.

Returns The time step used in model.

Return type float

get_time_units()→ str
Time units of the model.

Returns The model time unit; e.g., days or s.

Return type float

Notes

CSDMS uses the UDUNITS standard from Unidata.

get_value(name: str, dest: numpy.ndarray)→ int
Get a copy of values of the given variable.

This is a getter for the model, used to access the model’s current state. It returns a copy of a model variable,
with the return type, size and rank dependent on the variable.

Parameters

• name (str) – An input or output variable name, a CSDMS Standard Name.

• dest (ndarray) – A numpy array into which to place the values.

Returns The same numpy array that was passed as an input buffer.

11.1. mosartwmpy.model module 33

mosartwmpy, Release latest

Return type ndarray

get_value_at_indices(name: str, dest: numpy.ndarray, inds: numpy.ndarray)→ int
Get values at particular indices.

Parameters

• name (str) – An input or output variable name, a CSDMS Standard Name.

• dest (ndarray) – A numpy array into which to place the values.

• indices (array_like) – The indices into the variable array.

Returns Value of the model variable at the given location.

Return type array_like

get_value_ptr(name: str)→ numpy.ndarray
Get a reference to values of the given variable.

This is a getter for the model, used to access the model’s current state. It returns a reference to a model
variable, with the return type, size and rank dependent on the variable.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns A reference to a model variable.

Return type array_like

get_var_grid(name: str)→ int
Get grid identifier for the given variable.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns The grid identifier.

Return type int

get_var_itemsize(name: str)→ int
Get memory use for each array element in bytes.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns Item size in bytes.

Return type int

get_var_location(name: str)→ str
Get the grid element type that the a given variable is defined on.

The grid topology can be composed of nodes, edges, and faces.

node A point that has a coordinate pair or triplet: the most basic element of the topology.

edge A line or curve bounded by two nodes.

face A plane or surface enclosed by a set of edges. In a 2D horizontal application one may consider the
word “polygon”, but in the hierarchy of elements the word “face” is most common.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns The grid location on which the variable is defined. Must be one of “node”, “edge”, or
“face”.

Return type str

34 Chapter 11. mosartwmpy Python API

mosartwmpy, Release latest

Notes

CSDMS uses the ugrid conventions to define unstructured grids.

get_var_nbytes(name: str)→ int
Get size, in bytes, of the given variable.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns The size of the variable, counted in bytes.

Return type int

get_var_type(name: str)→ str
Get data type of the given variable.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns The Python variable type; e.g., str, int, float.

Return type str

get_var_units(name: str)→ str
Get units of the given variable.

Standard unit names, in lower case, should be used, such as meters or seconds. Standard abbreviations,
like m for meters, are also supported. For variables with compound units, each unit name is separated by
a single space, with exponents other than 1 placed immediately after the name, as in m s-1 for velocity, W
m-2 for an energy flux, or km2 for an area.

Parameters name (str) – An input or output variable name, a CSDMS Standard Name.

Returns The variable units.

Return type str

Notes

CSDMS uses the UDUNITS standard from Unidata.

initialize(config_file_path: str = './config.yaml', grid: Optional[mosartwmpy.grid.grid.Grid] = None,
state: Optional[mosartwmpy.state.state.State] = None)→ None

Perform startup tasks for the model.

Perform all tasks that take place before entering the model’s time loop, including opening files and initial-
izing the model state. Model inputs are read from a text-based configuration file, specified by filename.

Parameters config_file (str, optional) – The path to the model configuration file.

Notes

Models should be refactored, if necessary, to use a configuration file. CSDMS does not impose any con-
straint on how configuration files are formatted, although YAML is recommended. A template of a model’s
configuration file with placeholder values is used by the BMI.

plot_variable(variable: str, log_scale: bool = False, show: bool = True)
Display a colormap of a spatial variable at the current timestep.

set_value(name: str, src: numpy.ndarray)→ int
Specify a new value for a model variable.

11.1. mosartwmpy.model module 35

http://ugrid-conventions.github.io/ugrid-conventions
http://www.unidata.ucar.edu/software/udunits

mosartwmpy, Release latest

This is the setter for the model, used to change the model’s current state. It accepts, through src, a new
value for a model variable, with the type, size and rank of src dependent on the variable.

Parameters

• var_name (str) – An input or output variable name, a CSDMS Standard Name.

• src (array_like) – The new value for the specified variable.

set_value_at_indices(name: str, inds: numpy.ndarray, src: numpy.ndarray)→ int
Specify a new value for a model variable at particular indices.

Parameters

• var_name (str) – An input or output variable name, a CSDMS Standard Name.

• indices (array_like) – The indices into the variable array.

• src (array_like) – The new value for the specified variable.

unmask(vector: numpy.ndarray)→ numpy.ndarray

update()→ None
Advance model state by one time step.

Perform all tasks that take place within one pass through the model’s time loop. This typically includes
incrementing all of the model’s state variables. If the model’s state variables don’t change in time, then
they can be computed by the initialize() method and this method can return with no action.

update_until(time: Optional[float] = None)→ None
Advance model state until the given time.

Parameters time (float) – A model time later than the current model time.

36 Chapter 11. mosartwmpy Python API

PYTHON MODULE INDEX

m
mosartwmpy, 1
mosartwmpy.model, 29

37

mosartwmpy, Release latest

38 Python Module Index

INDEX

F
finalize() (mosartwmpy.model.Model method), 29

G
get_component_name() (mosartwmpy.model.Model

method), 29
get_current_time() (mosartwmpy.model.Model

method), 29
get_end_time() (mosartwmpy.model.Model method),

29
get_grid_edge_count() (mosartwmpy.model.Model

method), 29
get_grid_edge_nodes() (mosartwmpy.model.Model

method), 29
get_grid_face_count() (mosartwmpy.model.Model

method), 30
get_grid_face_edges() (mosartwmpy.model.Model

method), 30
get_grid_face_nodes() (mosartwmpy.model.Model

method), 30
get_grid_node_count() (mosartwmpy.model.Model

method), 30
get_grid_nodes_per_face()

(mosartwmpy.model.Model method), 30
get_grid_origin() (mosartwmpy.model.Model

method), 31
get_grid_rank() (mosartwmpy.model.Model method),

31
get_grid_shape() (mosartwmpy.model.Model

method), 31
get_grid_size() (mosartwmpy.model.Model method),

31
get_grid_spacing() (mosartwmpy.model.Model

method), 31
get_grid_type() (mosartwmpy.model.Model method),

31
get_grid_x() (mosartwmpy.model.Model method), 32
get_grid_y() (mosartwmpy.model.Model method), 32
get_grid_z() (mosartwmpy.model.Model method), 32
get_input_item_count() (mosartwmpy.model.Model

method), 32

get_input_var_names() (mosartwmpy.model.Model
method), 32

get_output_item_count()
(mosartwmpy.model.Model method), 33

get_output_var_names() (mosartwmpy.model.Model
method), 33

get_start_time() (mosartwmpy.model.Model
method), 33

get_time_step() (mosartwmpy.model.Model method),
33

get_time_units() (mosartwmpy.model.Model
method), 33

get_value() (mosartwmpy.model.Model method), 33
get_value_at_indices() (mosartwmpy.model.Model

method), 34
get_value_ptr() (mosartwmpy.model.Model method),

34
get_var_grid() (mosartwmpy.model.Model method),

34
get_var_itemsize() (mosartwmpy.model.Model

method), 34
get_var_location() (mosartwmpy.model.Model

method), 34
get_var_nbytes() (mosartwmpy.model.Model

method), 35
get_var_type() (mosartwmpy.model.Model method),

35
get_var_units() (mosartwmpy.model.Model method),

35

I
initialize() (mosartwmpy.model.Model method), 35

M
Model (class in mosartwmpy.model), 29
module

mosartwmpy, 1
mosartwmpy.model, 29

mosartwmpy
module, 1

mosartwmpy.model
module, 29

39

mosartwmpy, Release latest

P
plot_variable() (mosartwmpy.model.Model method),

35

S
set_value() (mosartwmpy.model.Model method), 35
set_value_at_indices() (mosartwmpy.model.Model

method), 36

U
unmask() (mosartwmpy.model.Model method), 36
update() (mosartwmpy.model.Model method), 36
update_until() (mosartwmpy.model.Model method),

36

40 Index

	mosartwmpy
	getting started
	model input
	multi-file input

	model output
	subdomains
	visualization
	model coupling
	testing and validation
	mosartwmpy tutorial
	Python Virtual Environments
	mosartwmpy Python API
	mosartwmpy.model module

	Python Module Index
	Index

